Lean Six Sigma: Understanding Mean, Median, and Variance in a Bicycle Manufacturing factory

by | Dec 19, 2024 | Uncategorized | 0 comments

Lean Six Sigma: Mean, Median, and Variance in a Bicycle Manufacturing Factory

Introduction

Lean Six Sigma combines Lean’s emphasis on eliminating waste with Six Sigma’s focus on reducing variation. This methodology helps businesses optimize processes, improve quality, and maintain consistent results.

In this article, we will analyze weekly assembly times in a bicycle manufacturing factory. Using tools like mean, median, and variance, we will calculate performance metrics, visualize process stability with a control chart, and derive actionable insights for process improvement.


Scenario: Weekly Assembly Times

The factory records the weekly assembly times (in hours) for a key production line. Below is the dataset for 12 weeks:

Week Assembly Time (hours)
1 48
2 50
3 52
4 49
5 51
6 50
7 53
8 48
9 49
10 47
11 50
12 51

Step-by-Step Calculations

1. Mean (Average)

The mean represents the average of all data points.

Formula (Plain Text):
Mean = (Sum of all assembly times) / (Number of weeks)

Calculation (Plain Text):
Mean = (48 + 50 + 52 + 49 + 51 + 50 + 53 + 48 + 49 + 47 + 50 + 51) / 12
Mean = 598 / 12
Mean = 49.83 hours


2. Median

The median is the middle value of the data when arranged in ascending order. If there is an even number of data points, the median is the average of the two middle values.

Sorted Data (Plain Text):
47, 48, 48, 49, 49, 50, 50, 50, 51, 51, 52, 53

Middle Values:
50, 50

Calculation (Plain Text):
Median = (50 + 50) / 2
Median = 100 / 2
Median = 50 hours


3. Variance

Variance measures how far each data point is from the mean. It represents the average squared deviation.

Formula (Plain Text):
Variance = (Sum of squared deviations from the mean) / (Number of weeks)

Step-by-Step Calculation (Plain Text):

  1. Subtract the mean from each assembly time, then square the result:
    (48 – 49.83)² = 3.34
    (50 – 49.83)² = 0.03
    (52 – 49.83)² = 4.69
    (49 – 49.83)² = 0.69
    (51 – 49.83)² = 1.36
    (50 – 49.83)² = 0.03
    (53 – 49.83)² = 10.12
    (48 – 49.83)² = 3.34
    (49 – 49.83)² = 0.69
    (47 – 49.83)² = 8.00
    (50 – 49.83)² = 0.03
    (51 – 49.83)² = 1.36
  2. Add all squared deviations:
    Sum of squared deviations = 3.34 + 0.03 + 4.69 + 0.69 + 1.36 + 0.03 + 10.12 + 3.34 + 0.69 + 8.00 + 0.03 + 1.36 = 33.68
  3. Divide by the number of weeks:
    Variance = 33.68 / 12
    Variance = 2.81 hours²

4. Standard Deviation

Standard deviation is the square root of the variance. It shows the extent of variation in the dataset.

Formula (Plain Text):
Standard Deviation = √Variance

Calculation (Plain Text):
Standard Deviation = √2.81
Standard Deviation = 1.68 hours


5. Control Limits for Control Chart

Control limits are calculated based on the mean and standard deviation.

Central Line (CL):
CL = Mean = 49.83 hours

Upper Control Limit (UCL):
UCL = Mean + (3 × Standard Deviation)
UCL = 49.83 + (3 × 1.68)
UCL = 49.83 + 5.04
UCL = 54.87 hours

Lower Control Limit (LCL):
LCL = Mean – (3 × Standard Deviation)
LCL = 49.83 – (3 × 1.68)
LCL = 49.83 – 5.04
LCL = 44.79 hours


Control Chart

(The control chart below shows assembly times with the calculated control limits.)

Control Chart for Weekly Assembly Times

  • Facebook
  • Gmail
  • LinkedIn

The control chart above visualizes weekly assembly times alongside the calculated control limits (UCL and LCL) and the central line (mean). This tool helps identify process stability over time.


Actionable Insights

  1. Monitor Process Stability:
    All assembly times fall within the control limits (UCL = 54.87, LCL = 44.79), indicating a stable and consistent process.
  2. Reduce Variation:
    The standard deviation (1.68 hours) and variance (2.81 hours²) suggest minor variability. Using Lean Six Sigma tools, further standardization can optimize assembly times.
  3. Continuous Improvement:
    Implementing methods like 5S, employee training, and Kaizen events can help identify inefficiencies and improve productivity.
  4. Regular Monitoring:
    Regular updates to the control chart will ensure the process remains under control and deviations are quickly addressed.

About the Author

Jvalin Sonawala

Lean Six Sigma Master Black Belt with 20+ years of experience and have trained more than 100+ people througout his career and have completed more than 50+ Lean Six Sigma Projects.

Enroll in your training today

We offer Instructor Led and Self Study online Option as well

Subscribe

Mauris blandit aliquet elit, eget tincidunt nibh pulvinar a. Vestibulum ant

Follow Us

Related Posts

Shine: Clean and Inspect Your Workspace

Shine: Clean and Inspect Your WorkspaceIn our daily lives, the environment in which we work plays a crucial role in shaping our productivity and overall well-being. A clean and inspected workspace is not merely a matter of aesthetics; it significantly influences our...

Set in Order: Organize for Easy Access

Set in Order: Organize for Easy AccessIn our fast-paced world, the significance of organization cannot be overstated. It serves as the backbone of productivity, allowing us to navigate our daily tasks with clarity and purpose. When we take the time to organize our...

Streamlining Your Life: The Power of Sorting and Eliminating

Streamlining Your Life: The Power of Sorting and EliminatingAs we embark on the journey of streamlining our lives, we quickly realize that the benefits are both profound and far-reaching. Streamlining is not merely about decluttering our physical spaces; it extends to...

Implementing 5S System for Workplace Organization

Implementing 5S System for Workplace OrganizationIn the ever-evolving landscape of modern workplaces, efficiency and organization have become paramount. As we navigate through the complexities of our daily tasks, we often find ourselves yearning for a structured...

Mapping the Current and Future State of Process Efficiency

Mapping the Current and Future State of Process EfficiencyIn today’s fast-paced business environment, the concept of process efficiency has emerged as a cornerstone for organizations striving to maintain a competitive edge. We find ourselves in a landscape where...

Navigating Change: Current vs. Future State Mapping

Navigating Change: Current vs. Future State MappingIn today’s fast-paced world, organizations are constantly faced with the need to adapt and evolve. Change mapping serves as a crucial tool in navigating this landscape, allowing us to visualize the journey from our...